概率論與數(shù)理統(tǒng)計(jì)(二)
- 設(shè)隨機(jī)變量X與Y相互獨(dú)立,且XB(n,p),YG(p),則E(XY)= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=a*(3^k)/k!,k=0,1,2,..., 且E(X)=3,則D(X)= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λ/(k(k+1)),k=1,2,...,則λ的取值為 _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λ^k/k!,k=0,1,2,...,若E[(X+1)(X+2)]=11,則λ= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λλ],k=0,1,2,...,則P{X=1}= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λ/(2^k),k=0,1,2,..., 且E(X)=2,則P{X=1}= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λ/(2^k),k=1,2,...,則λ= _______.2024-11-12
- 設(shè)隨機(jī)變量(X,Y)在區(qū)域D={(x,y)|0≤x≤2,0≤y≤1}上服從均勻分布,則P{X+Y≤1}= _______.2024-11-12
- 設(shè)隨機(jī)變量X與Y相互獨(dú)立,且X~N(μ1,σ12),Y~N(μ2,σ22),則Z=2X-Y~ _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C/(k+1)(k+2),k=0,1,2,..., 若E(X)=1/2,則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λλ],k=0,1,2,...,則E[(X+1)(X+2)]= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C/k(k+1),k=1,2,...,則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C*(2/3)^k,k=1,2,...,則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λ2)=2,則D(X)= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λk),k=0,1,2,..., 且E(X)=1,則λ= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=a(k+1),k=0,1,2,...,其中a>0,若E(X)=3/4,則a= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C*(2/3)^k/k!,k=0,1,2,..., 則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=a/N,k=1,2,...,N,則a= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C/k!(k=0,1,2,...),則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C*(0.5)^k,k=1,2,..., 若E(X)=1.5,則D(X)= _______.2024-11-12