概率論與數(shù)理統(tǒng)計(jì)(二)
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C*(3^k)/k!,k=0,1,2,... ,若E(X)=9/2,則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=a(k+1),k=0,1,2,...,其中a>0,則E(X)= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C/k(k+2),k=1,2,...,則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C*(2^k)/k!,k=0,1,2,... ,則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C*(3^k)/k!,k=0,1,2,..., 則P{X=1}= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=a(k+1),k=0,1,2,...,其中a>0,若E(X)=4/3,則a= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λ/(k(k+1)) (k=1,2,...),其中λ為常數(shù),則λ的取值為 _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=(λ^k)/k!,k=0,1,2,...,則λ= _______.2024-11-12
- 設(shè)隨機(jī)變量X與Y相互獨(dú)立,且XN(0,1),YN(0,4),則D(2X-Y)= _______.2024-11-12
- 設(shè)隨機(jī)變量X與Y相互獨(dú)立,且X~N(μ1,σ12),Y~N(μ2,σ22),則Z=X-Y~ _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λk),k=1,2,...,則λ= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C*(3^k)/k!,k=0,1,2,..., 若E(X)=9/2,則D(X)= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=a(k+1) (k=0,1,2,...),其中a>0,則D(X)= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λk),k=0,1,2,...,則λ= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=a*(2/3)^k,k=1,2,... ,若E(X)=5/3,則P{X=2}= _______.2024-11-12
- 設(shè)隨機(jī)變量(X,Y)服從二維正態(tài)分布,其概率密度為f(x,y)=e^[-(x2+3y2)/2]/2π,則E(XY)= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C/(k+1)(k+2),k=0,1,2,...,則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=λ^k/(k+1)!,k=0,1,2,...,其中λ>0,則E(X)= _______.2024-11-12
- 設(shè)隨機(jī)變量X的分布律為P{X=k}=C(5/6)^(k-1)(1/6),k=1,2,... ,若P{X=4}=5/72,則C= _______.2024-11-12
- 設(shè)隨機(jī)變量X與Y相互獨(dú)立,且XU(0,2),YE(2),則E(X+Y)= _______.2024-11-12